Artificial Consciousness for Improving Reinforcement Learning
نویسنده
چکیده
Reinforcement learning methods are useful for robot learning, but become slow when robots possess many degrees of freedom. We suggest equipping robots with fast on-board simulators, in order to accelerate learning. Such simulators will resemble forms of consciousness, enabling the robots to perform run-time trials in a simulated world, rather than tediously performing them in practice. We have applied this method to locomotion for a friction-propelled snake-like robot. The simulator on this robot uses an accurate non-linear model of isotropic friction that is fast enough to be executable in real time. Although our original goal was to propose a method for robot programming, the approach appears useful for reinforcement learning in a general context.
منابع مشابه
An Adaptive Learning Game for Autistic Children using Reinforcement Learning and Fuzzy Logic
This paper, presents an adapted serious game for rating social ability in children with autism spectrum disorder (ASD). The required measurements are obtained by challenges of the proposed serious game. The proposed serious game uses reinforcement learning concepts for being adaptive. It is based on fuzzy logic to evaluate the social ability level of the children with ASD. The game adapts itsel...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملDo Artificial Reinforcement-Learning Agents Matter Morally?
Artificial reinforcement learning (RL) is a widely used technique in artificial intelligence that provides a general method for training agents to perform a wide variety of behaviours. RL as used in computer science has striking parallels to reward and punishment learning in animal and human brains. I argue that present-day artificial RL agents have a very small but nonzero degree of ethical im...
متن کاملReinforcement Learning Based PID Control of Wind Energy Conversion Systems
In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995